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ABSTRACT

The energy-time uncertainty principle is on a different footing than the momentum-

position uncertainty principle: In contrast to position, time is a c-number parameter, and

not an operator. As Aharonov and Bohm have pointed out, this leads to different

interpretations of the two uncertainty principles. In particular, one must distinguish

between an inner and an outer time in the definition of the spread in time At. It is the

inner time which enters the energy-time uncertainty principle. We have checked this by

means of a correlated two-photon light source in which the individual energies of the two

photons are broad in spectra, but in which their sum is sharp. In other words the pair of

photons is in an entangled state of energy. By passing one member of the photon pair

through a filter with width AE, it is observed that the other member's wave packet

collapses upon coincidence detection to a duration At, such that AEAt=fi, where this

duration At is an inner time, in the sense of Aharonov and Bohm. We have measured At

by means of a Michelson interferometer by monitoring the visibility of the fringes seen in

coincidence detection. This is a nonlocal effect, in the sense that the two photons are far

away from each other when the collapse occurs. We have excluded classical-wave

explanations of this effect by means of triple coincidence measurements in conjunction with

a beam splitter which follows the Michelson interferometer. Since Bell's inequalities are

known to be violated, we believe that it is also incorrect to interpret this experimental

outcome as if energy were a local hidden variable, i.e., as if each photon, viewed as a

particle, possessed some definite but unknown energy before its detection.

"This work was supported by ONR under grant N00014-90-J-1259.
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INTRODUCTION

The momentum-position and the energy-time uncertainty principles have very similar forms:

ApAx 2 fi/2, (1)

AEAt > fi/2. (2)

One expects this on the basis of relativistic considerations, since both momentum-energy and position-

time form four-vectors. However, in the usual formulation of quantum mechanics, there is an

important difference between the two uncertainty principles, since time is not an operator but a c-

number parameter, in contrast to position. Hence the standard method of derivation of the uncertainty

principle for momentum and position from the fundamental commutator of quantum mechanics,

[p, x] = r/i, (3)

does not work for energy and time.

quantity with a definite lower bound.

out by Aharonov and Bohm [Ref. 1].

2].

Furthermore, in contrast to momentum, energy is a physical

These difficulties are not merely mathematical ones, as pointed

There have also been many recent papers on this subject [Ref.

Aharonov and Bohm made a distinction between inner and outer times. Inner time refers to an

intrinsic time defined by the system itself, whereas outer time refers to a duration of measurement made

by some external apparatus. They showed by construction of an explicit counterexample that the

"usual" statement of the energy-time uncertainty principle in terms of an outer time, such as, "if the

duration of a measurement by an external apparatus on a system is restricted to At, then there exists an

uncontrollable amount of energy AE_-_/At imparted to the system by the apparatus," is incorrect.

However, the standard example of the energy-time uncertainty principle in terms of energy broadening

AE of an atomic energy level due to its finite lifetime x, such that AE=fi/'c, is correct, but here the

lifetime 'c refers to an inner time of the system. The latter example of the energy-time uncertainty

principle can be understood in terms of a classical Fourier analysis of a finite wave train of duration 'c,

i.e., A¢0= 1/x.

Here we point out a nonclassical aspect of this uncertainty principle, which arises from the

nonlocal collapse of the wave packet upon coincidence detection of a correlated pair of photons. The

two correlated photons (conventionally called "signal" and "idler" photons) are prepared by

spontaneous parametric down-conversion of a uv photon in a X (2) nonlinear crystal. When one member

of this pair (the "remote" one) is detected through a filter with width Am, the other member (the

"nearby" one) immediately collapses into a wave packet of duration "_=1/A03. If the remote filter is

broad, the nearby photon wave packet becomes narrow upon collapse; if the remote filter is narrow, the
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nearbywavepacketbecomesbroad,uponcoincidencedetection.In thissense,thereexistsa nonlocal
actionat adistance.Henceit is closelyrelatedto theEinstein-Podolsky-Rosenparadox.Thewaywe
measuredx is to pass the nearby wave packet through a Michelson interferometer. If this wave packet

overlaps with itself after reflection from the mirrors of the Michelson onto the recombining beam

splitter, then there will be interference fringes detected in coincidence with the remote photon; otherwise

interference fringes will not be visible. The wave packet duration thus measured is clearly an inner

time of the system, since it is self-referential.

EXPERIMENT

In our experiment the incident light was prepared in an entangled state consisting of a pair of

photons whose energies, E s = _cos and E i = _coi, although individually broad in spectrum, sum up to a

sharp quantity Ep = _co_ because they were produced from a single pump photon whose frequency COp
was sharp. This entangled state is given by

IV) =fdcosA(cos) I1)_ I1)%-COs (4)

where A(cos)= A(cop-¢0s) is the complex probability amplitude for finding one photon with a

frequency cos, i.e., in the n=l Fock state I 1)°_s ' and one photon with a frequency co_- cos, i.e., in

the n= 1 Fock state 1 )COp-_. According to the standard Copenhagen interpretation, t_e meaning of

this entangled state is that when a measurement of the energy of one photon results in a sharp value Es,

there is a sudden collapse of the wavefunction such that instantly at a distance, the other photon, no

matter how remote, also possesses a sharp value of energy Ep - E s. Thus energy is conserved.

Entangled states, i.e., coherent sums of product states, such as the one given by Eq. (4), result in

Einstein-Podolsky-Rosen-like effects which are nonclassical and nonlocal [Refs. 3-4].

We prepared the entangled state of energy, Eq. (4), by means of parametric fluorescence in the _(2)

nonlinear optical crystal potassium dihydrogen phosphate (KDP), excited by a single mode ultraviolet

(uv) argon ion laser operating at _.=351.1 nm [Ref. 4]. The uv laser beam was normally incident on the

KDP input face. In this fluorescence process, a single uv photon with a sharp spectrum is

spontaneously converted inside the crystal into two photons with broad, conjugate spectra centered at

half the uv frequency, conserving energy and momentum. We employed type I phase matching, so that

both signal and idler beams were horizontally polarized. The KDP crystal was 10 cm long and cut such

that the c-axis was 50.3* to the normal of its input face. We selected for study idler and signal beams

both centered at _.=702.2 nm which emerged at +1.5" and -1.5 °, respectively, with respect to the uv

beam. Coincidences in the detection of conjugate photons were then observed.

In Fig. 1, we show a schematic of the experiment. The idler photon (upper beam) was transmitted

through the "remote" filter F1 to the detector D1, which was a cooled RCA C31034A-02

photomultiplier. The signal photon (lower beam) entered a Michelson interferometer, inside one arm of
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whichweresequentiallyplacedtwo zero-orderquarterwaveplatesQ1andQ2. Thefastaxisof thefirst
waveplateQ1 wasfixed at 45° to thehorizontal,while thefastaxisof thesecondwaveplateQ2 was
slowly rotatedby acomputer-controlledsteppingmotor. After leavingtheMichelsonthesignalbeam
impingedona secondbeamsplitterB2, whereit waseithertransmittedto detectorD2 throughfilter F2,
or reflectedto detectorD3 throughfilter F3. FiltersF2andF3 wereidentical:Theybothhadabroad
bandwidth of 10 nm centeredat 702 nm. DetectorsD2 and D3 were essentiallyidentical to D1.
CoincidencesbetweenD1andD2andbetweenD1andD3 weredetectedby feedingtheir outputsinto
constantfractiondiscriminatorsandcoincidencedetectorsafterappropriatedelaylines. We usedEGG
C102Bcoincidencedetectorswith coincidencewindowresolutionsof 1.0nsand2.5 ns,respectively.
Also, triple coincidencesbetweenD1, D2 andD3 were detectedby feeding the outputsof the two
coincidencecountersintoathirdcoincidencedetector(aTektronix11302oscilloscopeusedin acounter
mode). Thevariouscountrateswerestoredoncomputereverysecond.

Ourarrangementof quarterwaveplatesinsidetheMichelsoninterferometergeneratesa geometrical

(Berry-Pancharatnam)phase,proportionalto the angle0 betweenthefast axesof thequarterwave
plates.We shallnot go intodetailconcerningthisphasehere,exceptto saythatit affordsaconvenient
way to seeinterferencefringeswithout changingthedifferencein armlengthsof the interferometer
[Ref. 5].

We tookdatabothoutsideandinsidethewhitelight fringeregionwheretheusualinterferencein
singlesdetectionoccurs.We reporthereonly ondatatakenoutsidethisregion,wheretheopticalpath
lengthdifferencewasat a fixed valuemuchgreaterthanthecoherencelengthof the signalphotons
determinedby thefilters F2andF3. Hencethefringe visibility seenby detectorsD2 andD3 in singles
detectionwasessentiallyzero.

THEORY

First we presenta simplified quantumanalysisof this experiment. In the Appendix,we will
presentamorecomprehensiveanalysisbasedon Glauber'scorrelationfunctions. Thestateof the light
aftertheMichelsoninterferometeris givenby

]_l/)ou t =f dc0sA(cos)[ [ 1) -o,s ei*(°p-°s)} (5)

where _(cop - cos) = 2rtAL/_x0 - co + CBerry is the phase shift arising from the optical path length

difference AL of the Michelgon fSor the photon with frequency COp- COs, plus the Berry's phase

contribution for this photon. The coincidence rate N12 (N13) between detectors D1 and D2 (D1 and D3)

is proportional to the probability of finding at the same time t one photon at detector D1 placed at r 1, and

one photon at detector D2 (D3) placed at r 2 (r3). When a narrowband filter F1 centered at frequency

COsis placed in front of the detector D1, N12 becomes proportional to

IV,out(r,,r2,0[2:l <rl, r2, tlV>,ou, I2 oc l+cos , (6)
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wheretheprimedenotestheoutput state after avon Neumann projection onto the eigenstate associated

with the sharp frequency cos upon measurement. Therefore, the phase ¢_is determined at the sharp

frequency cop - cos, or equivalently, the sharp energy Ep - E s. In practice, the energy width depends
on the bandwidth of the filter F1 in front of D1, so that the visibility of the fringes seen in coincidences

should depend on the width of this remote filter. This fringe visibility will be high, provided that the

optical path length difference of the Michelson does not exceed the coherence length of the collapsed

signal photon wave packet, determined by F1. If a sufficiently broadband remote filter F1 is used

instead, such that the optical path length difference is much greater than the coherence length of the

collapsed wave packet, then the coincidence fringes should disappear.

RESULTS

In Fig. 2, we show data which confirm these predictions. In the lower trace (squares) we display

the coincidence count rate between detectors D 1 and D3, as a function of the angle 0 between the fast

axes of waveplates Q1 and Q2, when the remote filter F1 was narrow, i.e., with a bandwidth of 0.86

nm. The calculated coherence length of the collapsed signal photon wave packet (570 lam) was greater

than the optical path length difference at which the Michelson was set (220 gm). The visibility of the
+ *coincidence fringes was quite high, viz., 60%_5%. This is in contrast to the low visibility, viz., less

than 2%, of the singles fringes detected by D3 alone (not shown). For comparison, in the upper trace

(triangles) we display the coincidence count rate versus 0 when a broad remote filter F1, i.e., one with

a bandwidth of 10 nm, was substituted for the narrow one. The coherence length of the collapsed

signal photon wave packet was thus only 50 I.tm. The coincidence fringes in this case have indeed

disappeared, as predicted.

DISCUSSION

In light of the observed violations of Bell's inequalities [Ref. 6], it is incorrect to interpret these

results in terms of an ensemble of conjugate signal and idler photons which possess definite, but

unknown, conjugate energies before filtering and detection. Any observable, e.g., energy or

momentum, should not be viewed as a local, realistic property carried by the photon before it is

actually measured.

The function of the second beamsplitter B2 was to verify that the signal beam was composed of

photons in an n=l Fock state. In such a state, the photon, due to its indivisibility, will be either

transmitted or reflected at the beamsplitter, but not both. Thus coincidences between D2 and D3 should

never occur, except for rare accidental occurrences of two pairs of conjugate photons within the

coincidence window. However, if the signal beam were a classical wave, then one would expect an

equal division of the wave amplitude at the 50% beamsplitter, and hence frequent occurrences of

*The slightly nonsinusoidal component in Fig. 3 (lower trace) can be explained by a slight wedge in

Q2, in conjunction with the fact the signal beam was incident on Q2 off center.
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coincidences.An inequality,which wasstronglyviolatedin ourexperiment,placesa lowerboundon
thiscoincidenceratefor classicallight (seebelow). Thisverifiestheessentiallyn=l Fockstatenature
of the light, andconfirmsthepreviousresultof HongandMandel[Ref. 7].

Thevertical arrowsin Fig. 2 indicatethepointsatwhich triple coincidencesweremeasured.Let
usdefinetheanticorrelationparameter[Ref. 8]

a - N12 3 N 1 / N12 N13 , (7)

where N123 is the rate of triple coincidences between detectors D1, D2 and D3, N12 is the rate of double

coincidences between D1 and D2, N13 is the rate of double coincidences between D1 and D3, and N 1 is

the rate of singles detections by D1 alone. The inequality a>l has been shown to hold for any classical

wave theory [Ref. 8]. The equality a=l holds for coherent states [ or), independent of their amplitude

a. Since in our experiment the amplitude fluctuations in the double coincidence pulses led to a triple

coincidence detection efficiency 1"1less than unity, we should reduce the expected value of a

accordingly. The modified classical inequality is a>rl. We calibrated our triple coincidence counting

system by replacing the two-photon light source by an attenuated light bulb, and measured

rl=0.70-L-_0.07. During the data run of Fig. 2 (lower trace), we measured values of a shown at the

vertical arrows. The average value of a is 0.08_+0.04, which violates by more than thirteen standard

deviations the predictions based on any classical wave theory. It is therefore incorrect to interpret these

results in terms of a stochastic ensemble of classical waves, in a semiclassical theory of photoelectric

detection [Ref. 9]. Classical waves with conjugate, but random, frequencies could conceivably yield the

observed interference pattern, but they would also yield many more triple coincidences than were

observed.

We have therefore verified the energy-time uncertainty principle for pairs of photons in essentially

n=l Fock states, in a way which excludes with very high probability any possible classical explanation.

These results can be understood in terms of the nonlocal collapse of the wavefunction.
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APPENDIX

A more rigorous theoretical description of the experiment can be carried out within the Glauber

correlation function formalism [Ref. 10]. We start with the entangled state of the down-converted light

Iv> =f dc%A( °s)11> <A.1)
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where A(cos)= A(0_- cos) is the complex probability amplitude for finding one photon with a

frequency cos and one photon with a frequency cop - cos" For simplicity we have assumed that the

pump photon is monochromatic. The second order correlation function relating the field amplitudes for

the signal and idler modes at the times ts and ti, respectively, is def'med as

G(2)(ts,ti; ti,ts) = (VI E(s--)(ts) F--l-)(ti) E_÷)(ti) ]v>. (A.2)

--.(_) ,-.(+)
In this expression, Es(i)(ts(i)) and Es(i)(ts(i)) are the negative- and positive-frequency parts of the electric

field for the signal (idler) mode. Assuming, as in Fig. 1, that the idler photon is directed to detector D 1,

the field operators for this mode at the time ti may simply be Fourier expanded in terms of a frequency-
^t ^

dependent detection efficiency lYh(coi)l 2, and creation and destruction operators ai (coi) and ai(coi):

t

"l+)(ti) / * "E = dcoi lql(O)i) ai(00i) e -i°_iti
J

(A.2a)

E (ti)= (ti (A.2b)

The effects of filter F1 are included in the factor rl. Similarly, the signal mode field operators may be

expanded, but these require an additional factor to account for the interferometer:

Es (ts) = dcos l]2(cos) as(cos) e -l°sts {1 -ei°_sX ei_B } (A.3a)

E_-)(ts) = (E_÷)(ts)) t, (A.3b)

where x = AL/c is the optical delay time between the arms of the interferometer, and _)B is the

geometrical/Berry phase.

The probability of joint detection of a signal-idler pair within the detector resolution window AT,

after a total time '/;, is then given by

P = dis dti G(2)(ts,ti;ti,ts)

'/'/'2 Jt s _AT
2

(A.4)

In practice, the duration time 'T of any data point is essentially infinite (with respect to all relevant

time-scales in the problem). In addition, for our experiment AT (--Ins) was much greater than '_

(-_730fs, for AL=2201.tm) and the reciprocal bandwidths, 1/Aco i and 1/Aco s, of the filters F1 and F2.
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Hence, we are justified in setting the limits of integration to infinity:

X lql((l)i) 111((1)i) l_2(t-0s) 1"12(O s) ei(t°i-e°'i)ti ei(C°s-tD's)ts

× _2(1-e-i_xe-i*B)(1-ei_'sXeiOB)

I^ ^' ^' Ix  (to )a/(o 0ai(toi)aRo ' ) 1, (A.5)

If we assume that the probability amplitude is essentially constant (A(¢o) -- A0) over the filter

bandwidths Ato i and At0 s, and that rl2(tOs) = r120 over the bandwidth A¢o s >> 1/x (i.e. a broad square

bandpass filter F2 in front of detector D2), then (A.5) simplifies considerably:

P = IAol 2 _12012/dt.0i _l(t.0i_ 2 {1 - cos ((COp- C0i)'[ + I_B)}.
(A.6)

We now examine the behavior of this detection probability in two limiting cases of filter F1:

1. If _l(0)i_ 2 = _ld 2 _(co i - _i0) (i.e. a very narrow filter in front of detector D1), then

P = IAol 2 _120l 2 _10_ {1 - cos ((fop- f.oio)_ + I_B)}. (A.7)

It should be clear from (A.6) that in order to observe these fringes, it suffices to have Ato i << 1/'_. This

is the situation in the lower trace of Fig. 2.

2. If _l(f.oi)_ =_lld 2 e-(t°i-t°i0)2/A4 , where AO) i >> 1/1; (we have previously stipulated the

experimental condition Ato s >> 1/'_ ), then

P = IAol2 tn2ol2 trlld 2 , (A.8)

a constant, with no fringes. The experimental results (top trace, Fig. 2) corresponding to a broad filter

F1 are in agreement with these predictions.

Note that since the filter F2 is relatively broadband (i.e. Ato s >> 1/x ), there are no fringes visible

in the singles rate of detector D2, even though fringes in coincidence may be present.
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